Dependent Dirichlet Process Spike Sorting
نویسندگان
چکیده
In this paper we propose a new incremental spike sorting model that automatically eliminates refractory period violations, accounts for action potential waveform drift, and can handle “appearance” and “disappearance” of neurons. Our approach is to augment a known time-varying Dirichlet process that ties together a sequence of infinite Gaussian mixture models, one per action potential waveform observation, with an interspike-interval-dependent likelihood that prohibits refractory period violations. We demonstrate this model by showing results from sorting two publicly available neural data recordings for which a partial ground truth labeling is known.
منابع مشابه
Spike Sorting Using Time-Varying Dirichlet Process Mixture Models
Spike sorting is the task of grouping action potentials observed in extracellular electrophysiological recordings by source neuron. In this thesis a new incremental spike sorting model is proposed that accounts for action potential waveform drift over time, automatically eliminates refractory period violations, and can handle “appearance” and “disappearance” of neurons during the course of the ...
متن کاملOn the Analysis of Multi-Channel Neural Spike Data
Nonparametric Bayesian methods are developed for analysis of multi-channel spike-train data, with the feature learning and spike sorting performed jointly. The feature learning and sorting are performed simultaneously across all channels. Dictionary learning is implemented via the beta-Bernoulli process, with spike sorting performed via the dynamic hierarchical Dirichlet process (dHDP), with th...
متن کاملطبقهبندی پتانسیلهای عمل نرونی با استفاده از شبکههای عصبی شعاعی
Background: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR) of the spikes. The mai...
متن کاملYASS: Yet Another Spike Sorter
Spike sorting is a critical first step in extracting neural signals from large-scale electrophysiological data. This manuscript describes an efficient, reliable pipeline for spike sorting on dense multi-electrode arrays (MEAs), where neural signals appear across many electrodes and spike sorting currently represents a major computational bottleneck. We present several new techniques that make d...
متن کاملA Brief Look into Spike Sorting Methods
Spike sorting is a class of techniques used in the analysis of electrophysiological data. Studying the dynamics of neural activity via electrical recording relies on the ability to detect and sort neural spikes recorded from a number of neurons by the same electrode. This article reviews methods for detecting and classifying action potentials, a problem commonly referred to as spike sorting.
متن کامل